logo

Video encyclopedia

Orthopole

0:13

Coup de poing reeducation epaule stephane vasseur orthopole 34 montpellier

0:34

elevation passive verticale reeducation epaule stephane vasseur orthopole 34 montpellier

0:08

le pendule 2 reeducation epaule stephane vasseur orthopole 34 montpellier

0:13

le pendule reeducation epaule stephane vasseur orthopole 34 montpellier

0:21

rotations avec baton reeducation epaule stephane vasseur orthopole 34 montpellier

In geometry, the orthopole of a system consisting of a triangle ABC and a line ℓ in the same plane is a point determined as follows. Let A ′, B ′, C ′ be the feet of perpendiculars dropped on ℓ from A, B, C respectively. Let A ′′, B ′′, C ′′ be the feet of perpendiculars dropped from A ′, B ′, C ′ to the sides opposite A, B, C (respectively) or to those sides' extensions. Then the three lines A ′ A ′′, B ′ B ′′, C ′ C ′′, are concurrent. The point at which they concur is the orthopole.
    Explore contextually related video stories in a new eye-catching way. Try Combster now!
    • General